位置:成果数据库 > 期刊 > 期刊详情页
基于双阈值AdaBoost算法的4-CBA含量软测量建模
  • ISSN号:0438-1157
  • 期刊名称:《化工学报》
  • 时间:0
  • 分类:TP274[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:南京邮电大学自动化学院,江苏南京210003
  • 相关基金:国家自然科学基金项目(61203213).
中文摘要:

针对PX氧化过程中4-CBA含量无法在线测量的问题,提出了一种基于双阈值更新样本权重的AdaBoost算法,该算法以BP神经网络作为弱学习器,采用轮盘赌方法根据样本权重在训练样本集中选择部分样本训练弱学习器,采用上一轮弱学习器的训练相对误差绝对值来更新所有训练样本的权重,在此基础上,用双阈值对样本误差范围进行划分,然后用不同的权重因子与原来的样本权值相乘实现样本权值的二次更新。该过程降低了含有大误差的样本的权值,增加了较大误差的样本的权值,从而减小了在下一轮训练过程中选到异常样本的概率。分别采用5种不同的方法并用实测的工业数据建立了4.CBA含量软测量模型,仿真结果表明用提出的改进AdaBoost算法建立的4-CBA含量软测量模型,其预测误差小于其他方法建立的模型误差。

英文摘要:

A modified AdaBoost algorithm with updating sample weight by dual threshold technique was proposed to model a soft sensor for estimating 4-CBA concentration, which could not be measured on-line in PX oxidation process. In this method, weak learners of BP neural networks were trained by part of samples selected by their weights and roulette wheel mechanism. The absolute values of last round training relative errors in weak learners were adopted to update weights of all training samples. Then, a second round updating on sample weights were completed by the product of original sample value and its weighting factor, which was defined by ratio of error range over dual thresholds. In the second updating process, weights were decreased for samples with gross errors but were increased for those with medium error. Consequently, probability of selecting outliers was reduced in following iteration of the training process. Five different methods were applied to model soft sensor of 4-CBA concentration with industrial data. Simulation results showed that the modified AdaBoost algorithm can improve soft sensor performance of 4-CBA concentration with predicting error less than that of other models.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《化工学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国化工学会 化学工业出版社
  • 主编:李静海
  • 地址:北京市东城区青年湖南街13号
  • 邮编:100011
  • 邮箱:hgxb126@126.com
  • 电话:010-64519485
  • 国际标准刊号:ISSN:0438-1157
  • 国内统一刊号:ISSN:11-1946/TQ
  • 邮发代号:2-370
  • 获奖情况:
  • 中国科协优秀期刊二等奖,化工部科技进步二等奖,北京全优期刊奖,中国期刊方阵“双效”期刊,第三届中国出版政府奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:35185