针对疲劳驾驶检测中现存的一些难点,提出了一种新颖的驾驶员眼睛定位与跟踪方法.首先采用Gamma校正和图像自商算法对红外光源采集到的驾驶员行车图像进行预处理,进而采用基于Haar-like特征的AdaBoost算法初定位驾驶员眼眉区域,并在此基础上采用眼眉区域15点ASM(Active Shape Models)模型来准确定位驾驶员的眼睛区域,最后采用了Unscented卡尔曼滤波算法完成驾驶员眼睛的实时跟踪.实验结果表明,该算法不仅可以提高对光照、姿态变化以及驾驶员眼睛运动的强非线性问题的鲁棒性,同时对驾驶员配戴眼镜的情况也能得到较为理想的处理结果.