给出有限维Lie代数Killing型的计算方法和机械化实现,本算法适合于任意有限维Lie代数,适用于非线性偏微分方程对称性的判断和应用.以此算法为基础,给出了1+2维标准双曲和抛物方程拥有Lie代数性质的判定,得到该两个经典方程的Lie代数结构及相关性质.给出了1+2维抛物方程Lie代数的优化系统,为从代数角度研究偏微分方程问题提供了可借鉴的结果.
A mechanical algorithm for Killing form of a finite dimensional Lie algebra is given. This algorithm can be used to decide the symmetry properties of nonlinear partial differential equa- tions (PDEs). Based on the algorithm, the structures of the Lie algebras of the standard 1 + 2 dimensional hyperbolic and parabolic PDEs and some algebraic properties of them are presented. The optimal system for a 1 +2 parabolic PDE has been shown to generalize the existing literature results on 1 + 1 one. These provide an alternative ways to study PDEs from the algebraic points.