位置:成果数据库 > 期刊 > 期刊详情页
基于差分进化生物地理学优化的多层感知器训练方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西安翻译学院工程技术学院,西安710105, [2]西安电子科技大学空间科学与技术学院ICIE研究所,西安710071
  • 相关基金:国家自然科学基金资助项目(61105066); 中央高校基本科研业务费专项资金资助项目(JB141305)
中文摘要:

针对生物地理学优化训练多层感知器存在的早熟收敛以及初始化灵敏等问题,提出一种基于差分进化生物地理学优化的多层感知器训练方法。将生物地理学优化(biogeography-based optimization,BBO)与差分进化(differential evolution,DE)算法相结合,形成改进的混合DE_BBO算法;采用改进的DE_BBO来训练多层感知器(multi-layer perceptron,MLP),并应用于虹膜、乳腺癌、输血、钞票验证四类数据分类。与BBO、PSO、GA、ACO、ES、PBIL六种主流启发式算法的实验结果进行比较表明,DE_BBO_MLP算法在分类精度和收敛速度等方面优于已有方法。

英文摘要:

The problems of premature convergence and initialization-sensitive are often experiencing when train the multi-layer perceptron using the biogeography-based optimization. This paper proposed a novel multi-layer perceptron training method using hybrid differential evolution and biogeography-based optimization. This paper introduced the differential evolution to the biogeography-based optimization to construct the hybrid DE_BBO algorithm and then used the hybrid DE_BBO algorithm for training MLPs. In order to investigate the efficiencies of DE_ BBO in training MLPs,this paper employed four classification datasets,including the Iris dataset,the breast cancer dataset,the blood transfusion datasets and the banknote authentication dataset. Comparing with six well-known heuristic algorithms,including BBO,PSO,GA,ACO,ES,and PBIL in a statistically significant way,the experimental results show that training MLPs using hybrid DE_BBO is significantly better than the current heuristic learning algorithms in terms of convergence speed and convergence accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049