位置:成果数据库 > 期刊 > 期刊详情页
基于L2范数最小估计的无人机飞控系统故障检测
  • ISSN号:1672-3961
  • 期刊名称:《山东大学学报:工学版》
  • 时间:0
  • 分类:TP206[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]北京航空航天大学仪器科学与光电工程学院,北京100191, [2]山东科技大学电气与自动化工程学院,山东青岛266590, [3]北京航空航天大学无人系统研究院,北京100191
  • 相关基金:国家自然科学基金资助项目(61333005,61421063);山东省泰山学者优势特色学科人才团队资助项目
中文摘要:

为了实现无人机飞行控制系统的快速在线故障检测,提出一种基于L2范数最小估计的无人机非线性飞行控制系统快速故障检测方法。建立无人机飞行控制系统的非线性故障模型,并将未知输入的L2范数最小估计值作为残差评价函数,对系统故障进行检测。在针对线性离散时变系统故障检测方法研究的基础上,利用Krein空间投影实现残差评价函数的递推计算以减小故障检测计算量。以无人机升降舵及速率陀螺故障检测为例,对算法进行仿真试验验证。试验结果表明:该方法可以快速有效的实现无人机飞行控制系统故障检测,为无人机的安全飞行提供可靠的保障。

英文摘要:

In order to realize the rapid online failt detection of unmanned aerial vehicle (UAV) flight control system, a fault detection approach based on optimal estimation of the L2-norm was proposed to the fault detection (FD) of UAV nonlinear flight control system. The nonlinear fault model of UAV flight control system was established, and an optimal estimation of the L2-norm of the unknowninputs was found to be the evaluation function for FD. On the foundation of the approach for linear discrete time-varying systems, the projection in Krein space was applied to calculate the evaluation function recursively, and thus the heavy online computational burden could be solved. The FD for UAV elevator and rate gyros was taken as an example to demonstrate the effectiveness of the proposed method. The results showed that the faults of the UAV flight control system could be detected rapidly through the proposed approach, and the safety of UVA could be guaranteed reliably.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《山东大学学报:工学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:山东大学
  • 主编:李术才
  • 地址:山东济南市经十路17923号
  • 邮编:250061
  • 邮箱:xbgxb@sdu.edu.cn
  • 电话:0531-88396452
  • 国际标准刊号:ISSN:1672-3961
  • 国内统一刊号:ISSN:37-1391/T
  • 邮发代号:24-221
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:6258