无人机(unmanned aerial vehicle,UAV)飞行控制系统的故障检测,对于保障无人机的飞行安全具有重要意义。等价空间方法具有残差与未知初始状态解耦的优势,但随着等价空间阶次的提高,其在线计算量显著增大。针对上述问题,提出一种基于等价空间的无人机非线性飞行控制系统快速故障检测方法。建立无人机飞行控制系统的非线性故障模型,在针对线性离散时变系统的等价空间故障检测方法研究的基础上,利用Krein空间投影来实现残差评价函数的递推计算以减小故障检测计算量。以无人机空速管及升降舵故障检测为例,对算法进行了仿真试验验证。试验结果表明,提出的方法可以实现无人机飞行控制系统的快速故障检测。
The fault detection (FD) for unmanned aerial vehicle (UAV) flight control system is of great significance to ensure the flight safety of UAV. The parity space approach has the advantage of the de, coupling of residual and unknown initial state. However, the increasing of parity order will lead to heavy computational task. Aiming at these problems, a modified parity space approach was put forward for the FD of UAV nonlinear flight control systems. The nonlinear fault model of UAV flight control system was established. On the foundation of parity space approach for linear discrete time-varying systems, the projection in Krein space was applied to calculate the evaluation function recursively, and thus the heavy online computational burden could be solved. The FD for UAV pitot tube and elevator was taken as an example to demonstrate the effectiveness of the proposed method. The results showed that the faults of the UAV flight control system could be detected rapidly through the proposed approach.