噪声衰减是探地雷达信号处理中的关键问题之一。当探测目标埋藏深度比较浅时,其反射信号与直耦信号和地面回波信号相互重叠,直接影响目标反射波到达时刻的检测及目标的正确定位。针对这个问题,本文提出了一种基于Curvelet变换的噪声衰减方法。通过对理论数值模拟数据和实测数据的处理,以及与平均消去法和二维连续小波该方法处理结果的对比,验证了该方法的可行性和有效性。处理结果显示,该方法不仅可以去除背景噪声、同时可以衰减倾斜相关的相干干扰和数据中的随机噪声。与二维连续小波变换方法相比有更高的计算效率。
Signal extraction is critical in GRP data processing and noise attenuation. When the target depth is shallow, its refl ection echo signal will overlap with the background noise, affecting the detection of arrival time and localization of the target. Thus, we propose a noise attenuation method based on the curvelet transform. First, the original signal is transformed into the curvelet domain, and then the curvelet coefficients of the background noise are extracted according to the distribution features that differ from the effective signal. In the curvelet domain, the coarse-scale curvelet atom is isotropic. Hence, a two-dimensional directional filter is designed to estimate the high-energy background noise in the coarsescale domain, and then, attenuate the background noise and highlight the effective signal. In this process, we also use a subscale threshold value of the curvelet domain to fi lter out random noise. Finally, we compare the proposed method with the average elimination and 2D continuous wavelet transform methods. The results show that the proposed method not only removes the background noise but also eliminates the coherent interference and random noise. The numerical simulation and the real data application suggest and verify the feasibility and effectiveness of the proposed method.