采用高炉多区域约束数学模型对典型氧气高炉流程进行模拟计算,确定了其在不同位置处的煤气成分,并结合传统高炉的升温制度,采用程序还原实验装置对含铁炉料在氧气高炉和传统高炉中的还原历程进行研究。结果表明,氧气高炉条件下,烧结矿和球团矿的还原开始温度较传统高炉分别降低60℃和150℃;当温度达到1100℃时,氧气高炉条件下,烧结矿和球团矿的还原度(RI)基本均达到100%,而传统高炉下其还原度(^1RI)分别为94%和83.1%。另外,经对反应后炉料的化学分析得出,氧气高炉条件下烧结矿和球团矿中的含碳量分别约为传统高炉条件下的10倍和2.5倍。
In present paper, the gas composition in different zones of traditional blast furnace and oxygen blast furnace was determined by using mathematical model of multi-zone constrains for blast furnace, the reduction process of the ferrous burden in different oxygen blast furnace was researched combined with specific heating program. The results indicate that compared with traditional blast furnaces, the reduction starting temperature of sinter and pellet decreased by 60 ℃ and 150 ℃ respectively under the condition of oxygen blast furnace; The reduction degree (RI) of sinter and pellet almost reached 100% in oxygen blast furnace condition when the temperature reached 1100 ℃, however, the reduction degree (RI) of sinter and pellet were only 94% and 83.1% respectively in traditional blast furnace. In addition, by chemical analysis of sinter and pellet after reaction, the content of carbon of sinter and pellet of oxygen blast furnace was about 10 times and 2.5 times that of traditional blast furnace, respectively.