位置:成果数据库 > 期刊 > 期刊详情页
复杂背景下的人体热图像分割
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TN911.73[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]广东工业大学自动化学院,广州510006, [2]阳江职业技术学院计算机科学系,广东阳江529566, [3]广东工业大学信息工程学院,广州510006
  • 相关基金:基金项目:国家自然科学基金(the National Natural Science Foundation of China under Grant No.60673132).
中文摘要:

复杂背景下,特别是在环境与人体温度相差不大的情况下,红外运动人体目标与背景的灰度值会非常相似,准确的红外人体分割是一个难题。对基于混合高斯模型的背景减除法进行改进,在二值化阶段采用改进型的脉冲耦合神经网络(PCNN)进行精细分割,利用多模态免疫进化算法(MIEA)自动确定PCNN分割参数。仿真实验结果表明,该算法图像分割精度高,实现了快速自动分割,取得了较为理想的图像分割效果。

英文摘要:

The accurate segmentation of infrared body is a difficult problem under complicated background,especially in the environment that the gray values are very similar between the infrared human movement target and background when their temperatures vary slightly.Therefore,the background subtraction method based on Gaussian mixture model is improved.The fine segmentation is implemented by the modified Pulse Coupled Neural Network(PCNN) in its binary stage,and meanwhile the PCNN segmentation parameters are determined by using the multi-modal immune evolution algorithm(MIEA).The simula- tion results show that this algorithm is achieved fast automatic segmentation,and has gotten the ideal effect of image seg- mentation that its precision is high.

同期刊论文项目
期刊论文 43 会议论文 2 专利 10
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887