位置:成果数据库 > 期刊 > 期刊详情页
基于小波包信息熵和小波神经网络的异步电机故障诊断
  • ISSN号:1672-3961
  • 期刊名称:《山东大学学报:工学版》
  • 时间:0
  • 分类:TM343[电气工程—电机]
  • 作者机构:南京航空航天大学自动化学院,江苏南京211100
  • 相关基金:国家自然科学基金资助项目(61490703);中央高校基本科研业务费专项基金资助项目(NJ20150011);南京航空航天大学大学生创新创业训练计划基金资助项目(ZT2016021)
中文摘要:

采用一种基于小波包信息熵和小波神经网络的方法对异步电机进行故障诊断。将故障信号进行小波包预处理,并在此基础上提取信号的小波包能谱熵和小波包系数熵,构成信号的信息熵特征向量。训练小波神经网络使其在输入特征向量后能有效检测并输出故障模式,以实现对单一故障和复合故障的诊断。通过内嵌的方式把小波变换融入神经网络,具有良好的自适应分辨率和容错能力,可以有效避免局部最小值以及收敛速度过于缓慢的问题。试验表明,基于小波包信息熵和小波神经网络的方法能很好地进行异步电机的故障诊断,且该方法优于同参数下的BP神经网络模型。

英文摘要:

A method based on wavelet packet entropy and wavelet neural network was presented for asynchronous motor to realize fault diagnosis. The signal with faulty information was pretreated by wavelet packet, the wavelet packet energy spectrum entropy and coefficient entropy was extracted. The feature vector of information entropy was constructed. When the feature vector was input into the wavelet neural network, we trained it to detect and output the fault mode, so as to realize the fault diagnosis. This method had good adaptive resolution and fault tolerance, and it could avoid local minima and slow convergence effectively. The experiment results showed that this method could be used for fault diagnosis of induction motors, which was better than BP neural network model with the same parameters.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《山东大学学报:工学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:山东大学
  • 主编:李术才
  • 地址:山东济南市经十路17923号
  • 邮编:250061
  • 邮箱:xbgxb@sdu.edu.cn
  • 电话:0531-88396452
  • 国际标准刊号:ISSN:1672-3961
  • 国内统一刊号:ISSN:37-1391/T
  • 邮发代号:24-221
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:6258