位置:成果数据库 > 期刊 > 期刊详情页
Erdoes-Ko-Rado theorem for irreducible imprimitive reflection groups
  • 时间:0
  • 分类:T[一般工业技术]
  • 作者机构:[1]Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
  • 相关基金:Acknowledgements The author would like to express her deep gratitude to Professor Jun Wang for guiding her into this area and thank the referees for their invaluable suggestions. This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11001176, 10971138).
作者: Li WANG[1]
中文摘要:

让是一个有限集合,并且让 G 是一个排列组在上。如果, G 的子集 H 被称为交叉为任何东西, H,他们同意至少一个点。我们证明无法缩减的 imprimitive 思考的一个最大的交叉子集组织 G (m, p, n ) 是一个点在的 stabilizer 的 coset { 1,, n } 提供的 n 足够地大。

英文摘要:

Let Ω be a finite set, and let G be a permutation group on Ω. A subset H of G is called intersecting if for any a, 7r H, they agree on at least one point. We show that a maximal intersecting subset of an irreducible imprimitive reflection group G(m,p,n) is a coset of the stabilizer of a point in {1,... ,n} provided n is sufficiently large.

同期刊论文项目
同项目期刊论文