基于q-类Stirling数定义中的基本函数[x]q=(1-q^x)(1-q)^-1和Legendre-Stirling数的定义,提出了第一类q-Legendre-Stirling数概念,研究了第一类q-Legendre-Stirling数的递推关系、显性表达式及若干相关的组合恒等式.
Based on the definition of the basic function[x]q =(1-q^x)(1-q)^-1 of q-class Stirling numbers and the Legendre-Stirling numbers, the concept of q- Legendre-Stirling numbers of the first kind is proposed. Also, the recurrence relations ofq- Legendre-Stirling numbers of the first kind, explicit expressions and some related combinatorial identities are studied.