在图G=(V,E)的一个正常染色{V1,V2,…,Vk}中,若i,j,1≤i≠j≤k,u∈Vi,v∈Vj,使得uv∈E,称该染色为b-染色.令b(G)=max{k|V1,V2,…,Vk:i,j,1≤i≠j≤k,u∈Vi,v∈Vj,uv∈E},称b(G)为图G的b-染色数.一个图G是b-连续的,如果k:χ(G)≤k≤b(G),用k种颜色可实现对G进行b-染色.通过构造特殊染色方案,研究了Corona图Pn。F1,m、Cn。Cm与Cn。F1,m的b-染色数与b-连续性.
For a proper coloring {V1 ,V2 ,…,Vk }of graph G= (V, E) if i,j,1≤i≠j≤k,u∈Vi,v∈Vj,that making uv∈E,this coloring is called b-coloring. Let b(G)=max{k|V1,V2,…,Vk:i,j,1≤i≠j≤k,u∈Vi,v∈Vj,uv∈E},then it will be called b-chromatic number of graph G. A graph G is of b-continuity if and only if k:χ(G)≤k≤b(G)and the b-coloring of G can be realized with k colors. By means of constructing a special Coloring plan, the b-chromatic number and b-continuity of Corona graph Pn.F1,m、Cn.Cm与Cn.F1,m are studied.