利用超材料吸波体对材料参数的电磁响应,可将其应用于传感.本文设计了一种工字形单元结构的超材料吸波体,基于频域算法对其在太赫兹频段的传感特性进行数值模拟,研究了待测样品折射率、厚度及电介质隔层厚度对超材料吸波体传感器的频率灵敏度、振幅灵敏度及品质因数的影响.研究结果表明:当待测样品厚度为40μm时,折射率频率灵敏度可达到153.17 GHz/RIU,折射率振幅灵敏度可达到41.37%/RIU;待测样品折射率一定时,厚度频率灵敏度随其厚度的增大而线性减小;随着待测样品厚度的增加, RFOM呈增大趋势,但增大幅度在逐渐减小;TFOM随待测样品厚度的增加而减小.
Recently, metamaterials have attracted considerable attention because of their unique properties and capability of being used in many areas of science. Among these applications, metamaterial absorber is the one researchers show much interests. On the basis of its electromagnetic responses to other material parameters, the metamaterial absorber can be applied to sensing. In this paper, a metamaterial absorber with an I-shaped unit cell is proposed and its favorable sensing characteristics in terahertz frequency range are numerically simulated in terms of frequency-domain algorithm. Influences of the thickness of the sample to be tested and the thickness of dielectric spacer of the sensing of metamaterial absorber on the frequency sensitivity, amplitude sensitivity, and the figure of merit of the refractive index, are studied in detail. Research results indicate that as the refractive index of the sample, whose thickness being fixed, increases, the resonant frequency red-shifts and the reflected amplitude increases. And when the thickness of the sample with a particular refractive index increases, the resonant frequency red-shifts and the reflected amplitude increases correspondingly. The above researches indicate that the sensing of thickness or refractive index of the sample to be tested (abbreviated as specimen) can be realized in a metamaterial absorber. The frequency sensitivity of the refractive index can reach 153.17 GHz/RIU and the amplitude sensitivity of the refractive index can reach 41.37%/RIU when the thickness of the sample is fixed at 40 μm. The frequency sensitivity of the refractive index increases as the thickness of the sample tested increases, but the increasing range gradually decreases. In addition, the amplitude sensitivity of the refractive index increases linearly with the increase of thickness of the sample tested. The frequency sensitivity of thickness decreases linearly with the increase of the thickness of the sample to be tested which is of a particular refractive index. As the th