结合杨辉三角的结构形式,基于大衍数列提出了一种列重为3或4的规则准循环低密度奇偶校验(QC-LDPC)码的新构造方法。该方法构造的校验矩阵围长至少为6,码长可灵活变化,并且可节省存储空间。仿真结果表明:在相同的仿真参数下,当误码率(BER)为10r6时,所构造的列重为3的QC—LDPC(1260,620)码的净编码增益(NCG)比二次函数码改善了1dB左右;列重为4的QC—LDPC(6056,3028)码相对于WMC-OCS、QC—OCS码分别有0.1dB和0.2dB的NCG提升。
According to structure of Yanghui Triangle and based on the Dayan sequence, a novel construction method of regular quasi-cyclic low-density parity-check (QC-LDPC) codes whose column weight is 3 or 4 is put forward. Girth of parity-check matrix is at least 6. Length of the code can vary flexibly. And storage spaces can be saved. Under the same parameters, at the bit error rate(BER) of 10 -s, simulation results show QC-LDPC( 1260, 620) code with column weight 3 has a net coding gain(NCG) nearly 1 dB more than quadratic function code and the NCG of QC-LDPC(6056, 3028) code with column weight 4 is 0.1 dB and 0.2 dB more than WMC-OCS and QC-OCS code respectively.