为了将协方差矩阵算法应用于自动目标检测,提出了特征相似度和协方差矩阵相似度.特征相似度是目标特征的相似程度,协方差矩阵相似度融合各个特征相似度.另外,鉴于特征具有不同的有效性和重要性,提出了最小特征相似度.最小相似度可以用于剔除基本无效的特征.通过实验证明,本方法能有效地将协方差矩阵算法应用于自动目标检测,具有较高的准确率.
In order to apply the covariance matrix algorithm to automatic target detection we present feature similarity and covariance matrix similarity. Feature similarity is the similarity of the target feature. Covariance matrix similarity integrates all the feature similarities. In addition, because features are different in validity and importance, we raise minimized feature similarity. Minimized feature similarity can be used to get rid of basically ineffective features. Experiments show that with this method one can effectively apply the covariance matrix algorithm to automatic target detection with high detection rate and low false alarm rate.