利用逐步回归和AIC信息准则估计倾向度,并且基于加权倾向度方法(weighting propensity score estimator,WPSE)和倾向度匹配方法(propensity score matching estimator,PSME),提出加权倾向度匹配方法(weighting propensity score matching estimator,WPSME)。并利用Bootstrap重复抽样方法对WPSE、PSME、WPSME3种方法进行了模拟比较。由估计偏差和标准差,说明了WPSME较其他两种方法更为准确、有效。最后利用WPSME对工作培训项目的平均处理效果进行了估计。
Step regression and AIC are applied to estimate the propensity score. Based on the weighting propensity score estimator (WlXSE) and propensity score matching estimator(PSME ), the weighting propensity score matching estimator( WPSME )is preposed. Then the three methods of WlXSE,PSME, WPSME are compared by simulating using the bootstrap method. It is shown that WPSME is more precise and more efficient than the other methods in terms of bias and standard deviation. Finally, the average treatment effect of the job training program is estimated with WPSME.