为了构造具有抵抗量子攻击潜力的公钥密码系统,利用纠错码理论构造了一个可证明安全的F-Niederreiter公钥密码体制。通过对现有F-Niederreiter公钥密码体制攻击方法的分析,提出如下命题:若攻击者不能进行解密询问或不能询问密文所对应的部分明文信息,则不存在多项式时间算法可以破解F-Niederreiter加密体制。基于该命题,构造了一个新的F-Nieder-reiter加密方案,并在随机预言模型下证明了其安全性。
To construst a public-key cryptosystem that can resist quantum computers,a provable F-Niederreiter PKC is designed by using error correcting code theory.By means of reviewing currently know attacks to the F-Niederreiter PKC,the assumption that without any decryption oracles or any partial knowledge on the plaintext of the challenge ciphertext,no polynomial-time algorithm can break F-Niederreiter PKC,is obtained.Then,a new F-Niederreiter PKC under the assumption is proposed,and the new F-Niederreiter PKC can be proved,in the random oracle model,to be IND-CCA2 security.