位置:成果数据库 > 期刊 > 期刊详情页
基于深层神经网络(DNN)的汉-越双语词语对齐方法
  • ISSN号:1671-9352
  • 期刊名称:《山东大学学报:理学版》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]昆明理工大学信息工程与自动化学院,云南昆明650051, [2]昆明理工大学智能信息处理重点实验室,云南昆明650051
  • 相关基金:国家自然科学基金资助项目(61262041); 云南省教育厅基金重大专项资助项目(2013FA030)
中文摘要:

针对汉-越双语因语言特点差异较大而导致难以实现词语自动对齐的问题,提出了一种基于深层神经网络(deep neural network,DNN)的汉-越双语词语对齐方法。该方法先将汉-越双语词语转化成词向量,作为DNN模型的输入,再通过调整和扩展HMM模型,并融入上下文信息,构建DNN-HMM词语对齐模型。实验以HMM模型和IBM4模型为基础模型,通过大规模的汉-越双语词语对齐任务表明,该方法的准确率、召回率较两个基础模型都有明显的提高,而词语对齐错误率大大降低。

英文摘要:

It is difficult to achieve auto-alignment between Vietnamese and Chinese,because their syntax and structure are quite different. In this case,we present a novel method for the Vietnamese-Chinese word alignment based on DNN( deep neural network). Firstly,we should convert Vietnamese-Chinese bilingual word into word embedding,and as the input within DNN. Secondly,DNN-HMMword alignment model is constructed by expanding HMMmodel,which also integrating the context information. The basic model of the experiments are HMMand IBM4. The results of largescale Vietnamese-Chinese bilingual word alignment task showthat this method not only significantly improved its accuracy and recall rate than the two basic models,but also greatly reduced word alignment error rate.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《山东大学学报:理学版》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:山东大学
  • 主编:刘建亚
  • 地址:济南市经十路17923号
  • 邮编:250061
  • 邮箱:xblxb@sdu.edu.cn
  • 电话:0531-88396917
  • 国际标准刊号:ISSN:1671-9352
  • 国内统一刊号:ISSN:37-1389/N
  • 邮发代号:24-222
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘
  • 被引量:6243