纳米金属多层膜材料已成为目前高性能微元器件以及互连结构的核心材料体系,其服役过程中的变形损伤与断裂是导致系统失效的关键因素.以本课题组近年来的研究结果为基础,结合当前国内外有关金属多层膜微柱体塑性变形行为研究的最新进展,阐述了金属多层膜微柱体微观结构-尺寸约束-服役性能三者之间的关联性,揭示了金属多层膜微柱体变形模式与损伤的内在规律,归纳了晶体/晶体与晶体/非晶两类层状结构材料加工硬化/软化行为的微观机理,并对纳米金属多层膜研究的发展趋势进行了展望.
The nanostructured metallic multilayers(NMMs) are widely used as essential components of high performance microelectronics and interconnect structures. The deformation and damage of NMMs is the essential factor leading to the structural failure of these systems. In this paper, based on these experimental results achieved by the authors, as well as the state-of-the-art and progress at home and abroad in the plastic deformation behavior of micropillars of Cu- based NMMs, the correlation of microstructure- size constraint- mechanical performance in the Cu-based nanolayered micropillars is illustrated. The universality of their deformation modes and internal damage mechanisms are revealed, and the work hardening /softening behaviors of two types of nanolaminates, including crystalline/crystalline and crystalline/amorphous NMMs, are summarized. Finally, a brief prospect on the studies of NMMs in future is suggested.