我们在相对论的量力学学习伪确切可解决的问题。我们与相等的向量和分级的潜力为二维的 KleinGordon 和迪拉克方程考虑这些问题,并且试着发现伪确切可解决的潜力的一般形式。在获得潜力的一般形式以后,我们在场给特定的形式的几个例子。在例子,我们为加加科内尔潜力的库仑潜力, Killingbeck 潜力和一个四次的潜力的泛音潜力是的特殊参数出现伪确切可解决的潜力。
We study the quasi-exactly solvable problems in relativistic quantum mechanics. We consider the problems for the two-dimensional Klein-Gordon and Dirac equations with equal vector and scalar potentials, and try to find the general form of the quasi-exactly solvable potential. After obtaining the general form of the potential, we present several examples to give the specific forms. In the examples, we show for special parameters the harmonic potential plus Coulomb potential, Killingbeck potential and a quartic potential plus Cornell potential are quasi-exactly solvable potentials.