设q≥2为整数,x为模q的Dirichlet特征,m,n为任意整数.广义Kloosterman和K(m,n,x;q)的定义为K(m,n,x;q)=q∑'a=1x(a)e(ma+na^-/q),其中∑'表示对q互素的所有整数a求和,e(y)=e2πiy,a^-是a关于模q的乘法逆,满足aa^-=1(modq)与1≤a^-≤q。本文研究了均值q∑m=1|K(m,n,x;q)|4,并给出了一些恒等式。
Let q ≥ 2 be an integer, X be a Dirichlet character modulo q, and let m, n be arbitrary integers. The general Kloosterman sum K(m, n, X; q) is defined by where ∑ denotes the summation over all a with (a, q) = 1, e(y) = e2πiy, is the inverse of a modulo q such that π =1 (mod q) and 1 〈 a 〈 q. In this paper we study the mean valueand give some identities.