提出了一种Godunov型中心型拉氏方法,用于求解二维柱坐标系中的可压缩多介质Euler方程组,该方法完全在体积控制体上离散,不仅保证质量、动量和总能量守恒,且该方法在二维柱坐标系中保一维球对称;并且对一维球对称问题在球对称网格划分下,精度测试表明该方法具有一阶精度,算例显示方法非常有效。
We proposed a Godunov type cell-centered Lagrangian method for solving Euler equations of compressible gas dynamics in cylindrical coordinates. The method is discretized on the true volume and it can not only preserve the conservation property for all the conserved variables including mass, momen- tum and total energy but also preserve the one-dimensional spherical symmetry in two-dimensional cylin- drical coordinates. The numerical results show the efficiency of the method.