位置:成果数据库 > 期刊 > 期刊详情页
基于Pivots选择的有效图像块描述子
  • ISSN号:1000-9825
  • 期刊名称:《软件学报》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]交通数据分析与挖掘北京市重点实验室(北京交通大学),北京100044, [2]河北农业大学信息科学与技术学院,河北保定071000
  • 相关基金:国家自然科学基金(61370129,61375062,61632004);CCF-腾讯犀牛鸟基金(RAGR20150116);长江学者和创新团队发展计划(IRT201206);保定市科学技术和知识产权局项目(16ZG026)
中文摘要:

随着视频采集和网络传输技术的快速发展以及个人移动终端设备的广泛使用,大量图像数据以集合形式存在.集合内在结构的复杂性使得如何度量集合间距离成为图像集分类的一个关键问题.为了解决这一问题,提出了一种基于双稀疏正则的图像集距离学习框架(double sparse regularizations for image set distance learning,简称DSRID).在该框架中,两集合间距离被建模成其对应的内部典型子结构间的距离,从而保证了度量的鲁棒性和判别性.根据不同的集合表示方法,给出了其在传统的欧式空间以及两个常见的流形空间,即对称正定矩阵流形(symmetric positive definite matrices manifold,简称SPD manifold)和格林斯曼流形(Grassmann manifold)上的实现.在一系列的基于集合的人脸识别、动作识别和物体分类任务中验证了该框架的有效性.

英文摘要:

With the development of video acquisition and transmission technologies, and the widespread applications of mobile terminal devices, more and more set-based images are available. The key issue of image set classification is how to measure the distance between two sets over the complexity of inner structure of the set. To address this problem, this paper presents a framework, called double sparse regularizations for image set distance learning (DSRID). In DSRID, the distance between two sets is calculated by the distance between two prominent sub-structures in each set, which enhances the robustness and discrimination of the measure. According to different set representations, this framework is implemented in traditional Euclidean space and two common manifolds, i.e., symmetric positive definite matrices manifold (SPD manifold) and Grassmann manifold. Extensive experiments demonstrate the effectiveness of the proposed method on set-based face recognition, action recognition and object categorization.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609