位置:成果数据库 > 期刊 > 期刊详情页
基于全局性确定聚类中心的文本聚类
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]广东商学院数学与计算科学学院,广州510320, [2]广东商学院信息学院,广州510320, [3]华南理工大学计算机科学与工程学院,广州510640
  • 相关基金:国家自然科学基金No.60873088; 广东省自然科学基金(No.06301003)
中文摘要:

文本聚类关键是有效解决特征词向量选择及特征词权重计算方法、文本相似度计算方法、聚类中心确定等三个问题。针对相关算法在三个关键环节上存在的问题,提出了适合自由文本特点的特征词权重计算方法和文本相似度计算方法;在此基础上提出了改进的CBC算法,从全局上自适应地确定文本集中的各个聚类中心。算法在实验中准确地确定了各个聚类中心,并在两个文本集上分别获得88.50%和94.00%的聚类准确率。

英文摘要:

The three key points of text clustering are feature selection and weight calculation,texts similarity calculation and cluster center determination.This paper proposes two new methods based on the characteristic of free texts for feature-weight calculation and texts similarity calculation separately.Then an improved CBC algorithm is proposed to determine the cluster centers adaptively and globally.This algorithm produces all cluster center correctly,and obtains precision of 88.50% and 94.00% for two different text-set separately.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887