针对航天器相对空间目标的定点悬停控制需求,基于非线性反馈固定时间稳定算法设计了一种闭环悬停控制律.阐述了固定时间稳定的原理,以C-W方程为相对运动模型设计了悬停控制律,可以通过改变相关控制参数来消除初始悬停误差和干扰的影响,实现对控制效果的调节.结果分析表明,提出的控制律对初始悬停误差收敛速率较快,能够保持长时间、高精度定点悬停,仿真结果验证了方法的有效性.
Based on fixed-time stabilization theory, a new hovering control strategy for spacecraft in relative orbit is investigated. First, the mathematical description of the fixed-time stabilization theory is introduced. Then, the hovering control law is proposed by utilizing C-W equation. The control effects can be adjusted to desired states in which the spacecraft hovers stably and precisely in finite time by regulating the values of corresponding parameters. Numerical simulation results are provided to validate the performance of the proposed control law.