根据新捣固机的工作原理,对核心部件捣固臂进行建模和结构分析,完成整个机械结构的设计,确定装置中主要结构尺寸及相关的工作参数。通过虚拟样机技术及仿真软件平台Pro/E,建立新捣固机的虚拟样机,并进行运动学仿真。研究结果表明:新捣固机的捣固臂采用负载自适应、频率和振幅连续可调的液压振动技术,克服了强迫振动加速捣镐磨损以及夹持液压缸摆动的缺陷。
According to the technical parameters of the existing tamping unit and the mechanism analysis of tamping arm, a new mechanical design was completed. Then, a size of the device's main structure and the working parameters were determined. Taking advantage of virtual prototyping technology and simulation software platform Pro/E, a virtual prototype of the new tamping unit was created and kinematics simulation was carried out. The results show that the new tamping machine which adopts hydraulic vibration technology of load sensing and stepless regulation of operating parameter can improve the wear of tamping bar by forced vibration and the strong swing drawback of the clamping cylinder.