位置:成果数据库 > 期刊 > 期刊详情页
基于随机森林回归算法的小麦叶片SPAD值遥感估算
  • ISSN号:1000-1298
  • 期刊名称:《农业机械学报》
  • 时间:0
  • 分类:TP79[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置] Q945.11[生物学—植物学]
  • 作者机构:[1]扬州大学江苏省作物遗传生理重点实验室,扬州225009, [2]扬州大学信息工程学院,扬州225009
  • 相关基金:国家自然科学基金资助项目(41271415); 江苏省高校自然科学基金资助项目(12KJB520018); 省属高校国际科技合作聘专重点资助项目; “六大人才高峰”高层次人才资助项目(2011-NY039); 江苏省高校优秀科技创新团队资助项目; 扬州大学科技创新培育基金资助项目(2013CXJ028)
中文摘要:

使用机器学习中的随机森林(RF)回归算法构建小麦叶片SPAD值遥感反演模型。以2010—2013年江苏地区试验点稻茬小麦3个生育期(拔节、孕穗、开花)的叶片为材料,结合我国自主研发的环境减灾卫星HJ-1对研究区域进行同步监测,分析了各生育期叶片SPAD值与8种植被指数间的相关性;以0.01水平下显著相关的植被指数作为输入参数,使用RF回归算法构建了每个生育期的小麦SPAD反演算法模型,即RF-SPAD模型,以支持向量回归(SVR)和反向传播(BP)神经网络算法构建的SVR-SPAD模型和BP-SPAD模型作为比较模型,以R2和均方根误差(RMSE)为指标,分析了每个生育期3个模型的学习能力和回归预测能力,结果表明:RF-SPAD模型在3个生育期都表现出最强的学习能力,R2和RMSE在拔节期分别为0.89和1.54,孕穗期分别为0.85和1.49,开花期分别为0.80和1.71;RF-SPAD模型在3个生育期的回归预测能力都高于BP-SPAD模型,高于或接近于SVR-SPAD模型,R2和RMSE在拔节期分别为0.55和2.11,孕穗期分别为0.72和2.20,开花期分别为0.60和3.16。

英文摘要:

As one of the machine learning algorithms, random forest (RF) regression was proposed firstly to construct remote sensing monitoring model to inverse leaf SPAD value in different growth stages of wheat. The experiment was carried out during 2010--2013 in Jiangsu province. Based on the wheat leaves and synchronous China' s domestic HJ- CCD multi-spectral data in the jointing stage, the booting stage and the anthesis stage respectively, the relationships between SPAD and eight vegetation indices were analyzed at corresponding period. According to the selected vegetation indices which were significantly related to the leaf SPAD value in the 0.01 level, the model for estimating leaf SPAD value at each period was built by using RF algorithm, namely the RF - SPAD model. At the corresponding period, SVR- SPAD model which was based on the support vector regression (SVR) and BP - SPAD model which was based on the back propagation (BP) neural network were constructed as compared models. SVR and BP neural network were both machine learning algorithms. Based on R2 and RMSE, the learning abilities and generalization abilities of three models at each period were analyzed. The results showed that the RF - SPAD model at three stages presented the strongest learning ability, which its R^2 was the highest as well as RMSE was the lowest, concretely, R2 and RMSE were 0. 89 and 1.54 in jointing stage, 0.85 and 1.49 in booting stage and 0.80 and 1.71 in anthesis stage respectively. RF - SPAD model's prediction ability was equal to or higher than the reference models which R2 and RMSE were 0.55 and 2.11 in jointing stage, 0. 72 and 2.20 in booting stage, 0.60 and 3.16 in anthesis stage respectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业机械学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业机械学会 中国农业机械化科学研究院
  • 主编:任露泉
  • 地址:北京德胜门外北沙滩一号6号信箱
  • 邮编:100083
  • 邮箱:njxb@caams.org.cn
  • 电话:010-64882610 64867367
  • 国际标准刊号:ISSN:1000-1298
  • 国内统一刊号:ISSN:11-1964/S
  • 邮发代号:2-363
  • 获奖情况:
  • 荣获中国科协优秀期刊二等奖,1997~2000年连续4年获中国科协择优资金,被列入中国期刊方阵,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:42884