微波等离子体相对其它等离子体而言有很多的优点,具有极高的工业应用价值。但在大气条件下,大体积的微波等离子体较难获得。为达到产生该种微波等离子体并将之应用的目的,特设计了一台环形波导反应腔设备并从事了等离子体激发的相关研究。介绍了该设备的设计思路,给出了常用的非磁化微波等离子体工作气体的击穿曲线,通过软件仿真得到了反应腔内的电场分布,并陈述了微波等离子体反应的基本现象。结合试验的结果,证明了软件仿真的正确性和装置的有效性。目前,该装置可在大气压下顺利激发一定体积的氦、氩等离子体。
Some scientists used waveguide as the cavity to produce a plasma jet, while large volume microwave plasma was relatively hard to get in atmospheric pressure. However, a few research institutes have already developed devices to generate large volume of atmospheric pressure microwave plasma, such as CYRANNUS and SLAN series, which can be widely applied. In this paper, present a microwave plasma system with ring waveguide to excite large volume of atmospheric pressure microwave plasma, plot curves on theoretical disruption electric field of some working gases, emulate the cavity through software, measure the power density to validate and show the appearance of microwave plasma. At present, large volume of argon and helium plasma have already been generated steadily by atmospheric pressure microwave plasma system. This research can build a theoretical basis of microwave plasma excitation under atmospheric pressure and will be useful in study of the device.