Copula函数能够用于构建粗尺度数据与细尺度数据间的二维联合分布实现降水、土壤湿度空间降尺度。为了探讨Copula函数在地表温度空间降尺度研究中的适用性,选取黑河中游荒漠绿洲区作为研究区,以2012年7月10日ASTER、MODIS地表温度影像作为数据源,开展基于Copula函数的地表温度空间降尺度研究,并利用地面实测地表温度数据对降尺度结果进行验证。结果表明:基于Copula函数的空间降尺度方法能够较好地刻画出细尺度像元的温度值,但是不易捕捉到地表温度突变区域的细节信息;能够显著地提高热红外遥感影像反演得到的地表温度数据的精度,MAE和RMSE分别从2.99K、3.87K减小至1.51K、2.36K。
A Copula is used to construct a bivariate distribution describing the relation between coarse-scale and fine-scale rainfall or soil moisture.This distribution is then used to downscale rainfall or soil moisture.In order to explore the feasibility of spatial downscaling Land Surface Temperature(LST)based on Copula,we implemented LST downscaling based on Copula and ASTER LST and MODIS LST products at Yingke oasis-desert area in the middle streams of the Heihe River Basin.The downscaled LST was calibrated by the ground observations from HiWATER-MUSOEXE experiment.The results show that the downscaling method based on Copula is able to achieve the LST downscaling in general,but the method can't obtain the fine-scale LST correctly at the interface between oasis and desert.The accuracy of LST obtained from thermal infrared satellite image was improved significantly by the method.The MAE and RMSE in LST are reduced from 2.99 K,and 3.89 Kto 1.5 1 K,and 2.36 K,respectively.