位置:成果数据库 > 期刊 > 期刊详情页
一种基于拓扑势的网络社区发现方法
  • 期刊名称:软件学报,第20卷第8期:2241~2254, 2009.8
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]清华大学软件学院,北京100084, [2]北京航空航天大学计算机科学与技术系,北京100191, [3]电子系统工程研究所,北京100039
  • 相关基金:Supported by the National Natural Science Foundation of China under Grant No.60675032 (国家自然科学基金); the National Basic Research Program of China under Grant Nos.2007CB310800, 2007CB311003 (国家重点基础研究发展计划(973))
  • 相关项目:网络化数据挖掘方法研究
中文摘要:

从数据场思想出发,提出了一种基于拓扑势的社区发现算法.该方法引入拓扑势描述网络节点间的相互作用,将每个社区视为拓扑势场的局部高势区,通过寻找被低势区域所分割的连通高势区域实现网络的社区划分.理论分析与实验结果表明,该方法无须用户指定社区个数等算法参数,能够揭示网络内在的社区结构及社区间具有不确定性的重叠节点现象.算法的时间复杂度为O(m+n^3/r)~O(n^2),n为网络节点数,m为边数,2〈γ〈3为一个常数.

英文摘要:

Inspired from the idea of data fields, a community discovery algorithm based on topological potential is proposed. The basic idea is that a topological potential function is introduced to analytically model the virtual interaction among all nodes in a network and, by regarding each community as a local high potential area, the community structure in the network can be uncovered by detecting all local high potential areas margined by low potential nodes. The experiments on some real-world networks show that the algorithm requires no input parameters and can discover the intrinsic or even overlapping community structure in networks. The time complexity of the algorithm is O(m+n^3/r)-O(n^2), where n is the number of nodes to be explored, m is the number of edges, and 2〈γ〈3 is a constant.

同期刊论文项目
期刊论文 18 会议论文 15
同项目期刊论文