氢的轮流出现的多层的电影冲淡了 hydrogenated protocrystalline 硅(pc-Si : H ) 用血浆被准备 -- 提高的化学蒸汽免职技术。扔的电影的微观结构和他们的 Schottky 二极管结构的 photoresponse 特征被散布光谱学的拉曼调查, Fourier 变换红外线的光谱学和光电流系列。微观结构和光吸收分析建议准备电影是 pc-Si : 有硅 nanocrystals (NC ) 和它的非结晶的对应物和这些电影的乐队差距的二阶段的结构的 H 多层的电影与增加显示出一个减少的趋势水晶的部分。光电流测量表明硅 NC 便于产生相片的搬运人的空间分离,有效地减少非放射的再结合率,并且导致向有增加 crystallinity 的短波长的方面的 photoresponse 山峰价值移动。然而,搬运人陷井在长波长的区域在二极管 photoresponse 的重要减小接近硅 NC 和他们的空间搬运人监禁结果的表面缺点。当在二极管使用增加的偏爱电压时,从 350 ~ 1000 nm 的 photoresponse 的改进被观察,证明有利搬运人运输和产生相片的搬运人的一个有效集合被完成。两个都,在硅 NC 和在他们的接口的搬运人的套住 de 的限制电子洞对的空间分离背叛为负责在 photoresponse 系列和外部量效率的改进红移动。结果为高效率的 pc-Si 的搬运人运输控制提供基本数据: H 太阳能电池。
Alternating multilayer films of hydrogen diluted hydrogenated protocrystalline silicon (pc-Si:H) were prepared using a plasma-enhanced chemical vapor deposition technique.The microstructure of the deposited films and photoresponse characteristics of their Schottky diode structures were investigated by Raman scattering spectroscopy,Fourier transform infrared spectroscopy and photocurrent spectra.Microstructure and optical absorption analyses suggest that the prepared films were pc-Si:H multilayer films with a two-phase structure of silicon nanocrystals (NCs) and its amorphous counterpart and the band gap of the films showed a decreasing trend with increasing crystalline fraction.Photocurrent measurement revealed that silicon NCs facilitate the spatial separation of photo-generated carriers,effectively reduce the non-radiative recombination rate,and induce a photoresponse peak value shift towards the short-wavelength side with increasing crystallinity.However,the carrier traps near the surface defects of silicon NCs and their spatial carrier confinement result in a significant reduction of the diode photoresponse in the longwavelength region.An enhancement of the photoresponse from 350 to 1000 nm was observed when applying an increased bias voltage in the diode,showing a favorable carrier transport and an effective collection of photo-generated carriers was achieved.Both the spatial separation of the restricted electron-hole pairs in silicon NCs and the de-trapping of the carriers at their interface defects are responsible for the red-shift in photoresponse spectra and enhancement of external quantum efficiency.The results provide fundamental data for the carrier transport control of high-efficiency pc-Si:H solar cells.