位置:成果数据库 > 期刊 > 期刊详情页
基于分类一致性的迁移学习及其在行人检测中的应用
  • ISSN号:1672-3961
  • 期刊名称:山东大学学报(工学版)
  • 时间:2013.7
  • 页码:26-31+45
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]山东工商学院计算机科学与技术学院,山东烟台264005, [2]山东省高校智能信息处理重点实验室(山东工商学院),山东烟台264005
  • 相关基金:国家自然科学基金资助项目(61175053)
  • 相关项目:面向文本分类的迁移学习和半监督学习方法研究
中文摘要:

利用迁移学习解决在特定场景下尤其是在摄像头静止的监控场景下的行人检测问题,提出基于分类一致性的学习模型。利用Boosting技术从辅助训练集中选择具有正迁移能力的样本,对样本迁移能力给出了基于辅助分类器分类一致性的熵度量方法。对比实验表明,该学习模型能够有效地提高检测率,尤其是在标记样本较少的情况下仍得到了较好的检测效果。

英文摘要:

Based on the classification consensus, a novel transfer learning model for a scene-specific pedestrian detector especially in video surveillance with stationary cameras was propose. According to boosting technology, the samples showed positive transferability in auxiliary data set were selected and added to the target data set. The entropy-based transferability measurement was derived from the consensus on the predictions of auxiliary classifications. Experimental results showed that the proposed approach could improve the detection rate, especially with the insufficient labeled data.

同期刊论文项目
期刊论文 34 会议论文 4 获奖 2 著作 2
同项目期刊论文
期刊信息
  • 《山东大学学报:工学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:山东大学
  • 主编:李术才
  • 地址:山东济南市经十路17923号
  • 邮编:250061
  • 邮箱:xbgxb@sdu.edu.cn
  • 电话:0531-88396452
  • 国际标准刊号:ISSN:1672-3961
  • 国内统一刊号:ISSN:37-1391/T
  • 邮发代号:24-221
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:6258