提出一种基于混沌高斯局部吸引点量子粒子群(CGAQPSO)优化最小二乘支持向量机(LSSVM)的短期风电功率预测模型。首先,混沌算法初始化粒子种群,提高初始粒子在搜寻空间遍历性,将局部吸引点改进为高斯分布局部吸引点,增强粒子全局搜索能力,从而得到混沌高斯局部吸引点量子粒子群优化算法。对基于不同类型核函数(Linear、POLY、Sigmoid及RBF)进行比较,选择RBF核函数来构建LSSVM风电预测模型。最后,以安徽某风电场实测风电、温度及湿度的历史数据作为CGAQPSO-LSSVM(RBF)模型的训练数据。实验表明,与GA、PSO和QPSO优化LSSVM预测模型相比,所提出的CGAQPSO-LSSVM模型能够有效提高风电功率预测精确度。
Chaos Gauss attractor quantum-behaved particle swarm optimization( CGAQPSO) is proposed to optimize the parameters combination by adding chaos algorithm,Gauss attractor and dynamic expansion-contraction coefficient in QPSO algorithm. As the kernel function and its parameter have a great influence on the performance of the LSSVM model. The paper establishes LSSVM wind power prediction model based on different kernel functions,including Linear,Poly,RBF and Sigmoid kernel function,and RBF kernel function is selected as its optimal performance. To verify the proposed hybrid prediction model,the seven days actual data recorded in a wind farm located in Anhui of China are utilized to train the proposed model to forecast subsequent 24 h wind power. The results show that the proposed hybrid model achieves higher prediction accuracy compared with other models mentioned in the paper.