位置:成果数据库 > 期刊 > 期刊详情页
基于RBF神经网络的机器人的路径跟踪控制
  • ISSN号:1003-5060
  • 期刊名称:《合肥工业大学学报:自然科学版》
  • 时间:0
  • 分类:TP273[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]合肥工业大学计算机与信息学院,安徽合肥230009
  • 相关基金:国家自然科学基金资助项目(61100211)
中文摘要:

文章针对双轮移动机器人的路径跟踪问题,提出了基于反演法的运动学控制和滑模动力学控制相结合的控制算法,运动学控制器解决位姿和跟踪速度之间的控制关系,动力学控制器解决机器人的姿态和控制电压之间的控制关系;为了减小传统运动学控制器的跟踪误差、提高路径跟踪控制的特性,采用RBF神经网络对控制器的不确定参数进行在线自适应学习。仿真结果表明,文中提出的基于RBF神经网络自适应算法比传统控制算法具有更优越的跟踪效果。

英文摘要:

This paper presents an algorithm combining the kinematics controller designed by backstepping method and the dynamics controller designed by the sliding mode control for two'wheeled mobile robot path tracking. The kinematics controller is used to solve the control relationship between the posture and tracking speed, and the dynamics controller is used to solve the control relationship between the attitude and the control voltage of the robot, In order to reduce the tracking error of the traditional kinematics controller and improve the characteristics of path tracking control, the RBF neural network adaptive online learning is used for uncertain parameters of the controller. The simulation results show that the proposed adaptive algorithm based on RBF neural network has better tracking performance than the traditional control algorithm.

同期刊论文项目
期刊论文 20 会议论文 1 获奖 1
同项目期刊论文
期刊信息
  • 《合肥工业大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:合肥工业大学
  • 主编:何晓雄
  • 地址:合肥市屯溪路193号
  • 邮编:230009
  • 邮箱:XBZK@hfut.edu.cn
  • 电话:0551-2905639
  • 国际标准刊号:ISSN:1003-5060
  • 国内统一刊号:ISSN:34-1083/N
  • 邮发代号:26-61
  • 获奖情况:
  • 1999中国优秀高校自然科学学报,1997华东地区优秀期刊,1998安徽省优秀科技期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:19655