We propose a bulk negative refractive index (NRI) metamaterial composed of periodic array of tightly coupled metallic cross-pairs printed on the six sides of a cube for applications of superlenses. The structural characteristics of the three-dimensional (3D) metamaterial consist in the high symmetry and the superposition of metallic cross-pairs, which can increase the magnetic inductive coupling between adjacent cross-pairs and realize a broadband and isotropic NRI. The proposed 3D structure is simulated using the CST Microwave Studio 2006 to verify the design validity. The simulation results show that the proposed structure can not only realize simultaneously an electric and magnetic response to an incident electromagnetic (EM) wave, but also exhibit a broadband NRI whose relative bandwidth can reach up to 56.7%. In addition, the NRI band is insensitive to the polarization and the incident angle of the incident EM wave. Therefore, the proposed metamaterial is a good candidate material as three-dimensional broadband isotropic NRI metamaterial.
We propose a bulk negative refractive index (NRI) metamaterial composed of periodic array of tightly coupled metallic cross-pairs printed oR the six sides of a cube for applications of superlenses. The structural characteristics of the three-dimensional (3D) metamaterial consist in the high symmetry and the superposition of metallic cross-pairs, which can increase the magnetic inductive coupling between adjacent cross-pairs and realize a broadband and isotropic NRI. The proposed 3D structure is simulated using the CS~ Microwave Studio 2006 to verify the design validity. The simulation results show that the proposed structure can not only realize simultaneously an electric and magnetic response to an incident electromagnetic (EM) wave, but also exhibit a broadband NRI whose relative bandwidth can reach up to 56.7%. In addition, the NRI band is insensitive to tile polarization and the incident angle of the incident EM wave. Therefore, the proposed metamaterial is a good candidate material as three-dimensional broadband isotropic NRI metamaterial.