目的:探讨沉默调节蛋白1(Sirt1)对神经元轴突生长的影响。方法体外原代分离培养胚胎海马神经元,观察Sirt1在72 h神经元的分布表达;通过RNAi技术下调Sirt1基因,观察其对72 h神经元轴突长度的影响;通过质粒转染过表达Sirt1基因或药物白藜芦醇(RES)激活Sirt1蛋白,检测其对72 h神经元轴突长度的影响。结果免疫荧光染色结果显示Sirt1位于海马神经元的生长圆锥以及胞体和突起,尤其是轴突末端;与正常对照组(Sirt1正常表达组)相比,Sirt1表达下调可显著缩短72 h海马神经元轴突的长度[由(178.3±3.2)μm缩短到(110.2±18.30)μm,P<0.01];与正常对照组(Sirt1正常表达组)相比,基因过表达Sirt1可显著增加72 h海马神经元轴突的长度[由(178.3±3.2)μm增长到(310.6±39.5)μm,P<0.01]。与药物对照组(DMSO处理组)相比,药物RES激活Sirt1蛋白亦可显著增加72 h海马神经元轴突的长度[由(292.8±11.2)μm增长到(525.1±49.7)μm,P <0.01]。结论Sirt1在神经元的轴突生长中起着重要的作用,可作为轴突再生一个潜在的治疗靶点。
Objective To investigate the effect of silence regulatory protein 1 (Sirt1) on axonal outgrowth. Methods The hippocampal neurons was first isolated in vitro from rat embryos. The distribution and expression of Sirt1 were then detected 72 h later. The down-regulation of Sirt1 was induced by RNAi technology and up-regulation of Sirt1 was in-duced by overexpression of Sirt1 and resveratrol (RES). Immunofluorescence staining was used to examine the axon length. Results Immunofluorescence staining showed that Sirt 1 was located in neuronal cell body and neurite, especially in the distal axons. Down-regulation of Sirt1 significantly decreased axonal length compared with siRNA control group [(178.3 ± 3.2) μm vs. (110.2 ± 18.30) μm, P〈0.01 ]; Overexpression of Sirt1 significantly increased axonal length com-pared with eGFP control group [(178.3±3.2)μm vs (310.6±39.5)μm, P〈0.01 ];Activation of Sirt1 by RES treatment al-so significantly increased axonal length compared with vehicle control group (DMSO treated group) [(291.7±13.2)μm vs. (525.1±49.1)μm, P〈0.01 ]. Conclusions Sirt1 plays a key role in axonal growth which may be used as a potential thera-peutic target of axon regeneration.