该文主要是针对维吾尔语中生气,高兴,难过及惊讶等四大类情感分别进行基于情感词词典的句子情感分类。首先,结合维吾尔句子中的情感特点,通过人工抽取的方法收集了维吾尔句子中能表达情感的关键词和情感短语,并建立了包含情感关键词和情感短语的情感词词典。然后,利用关键词匹配算法实现了具有分类速度快、分类正确率较高的维吾尔语句子情感分类应用系统。最后,给出了实验结果,并且分析了所存在的问题及提出了相应的解决策略。
This paper is mainly for Uyghur angry,happiness,sadness and surprise etc.four categories respectively based on sentiment dictionary sentence sentiment classification.First,conducted a research on the sentiment features of the Uyghur sentence;through artificial extraction collected Uyghur sentence can be expressed emotional keywords and sentimental phrases and established the emotional dictionary that contains emotional keywords and emotional key phrases.Then,use keyword matching algorithm to achieve a classification with fast,correct classification rate of Uyghur sentence sentiment classification applications.Finally,the experiment results are given,and make an analysis of the existing problems and,for the further research,make recommendations for solution strategies.