令A为诺特基本k-代数,设J为其Jacobson根且半单代数A/J同构于有限个k的直积.证明了如果A是AS—Gorenstein代数,则其Yoneda代数ExtA(A/J,A/J)是Frobenius代数;如果A的内射维数injdimAA=d,则函子ExtdA(-,A)是可表示的.
Let A be a noetherian basic k-algebra with Jacobson radical J such that A/J is a finite product of k. It is proved that the Yoneda algebra Ext*A(A/J, A/J) is Frobenius if A is AS-Gorenstein and gldim A 〈∞. If the injective dimension injdimAA = d, then the functor Extd (-, A) is representable.