位置:成果数据库 > 期刊 > 期刊详情页
基于视觉显著图的结构反稀疏在线目标跟踪
  • ISSN号:1003-0530
  • 期刊名称:《信号处理》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:燕山大学信息科学与工程学院
  • 相关基金:国家自然科学基金(61071199);河北省自然科学基金(F2016203422)
中文摘要:

为提高稀疏跟踪器性能,提出一种在贝叶斯推论框架下的基于视觉显著图的结构反稀疏在线目标跟踪算法。首先将基于马尔可夫(Markov)模型的关联性视觉显著度检测算法用于当前帧并计算目标模板的显著图,其次提出全局与局部分块的结构外观模型表示候选目标,将显著图映射回每一个局部块并计算出对应的自适应权重,最后提出联合全局与局部稀疏解的度量准则度量候选目标与目标模板的相似度,从而确立在贝叶斯框架下对目标状态最佳估计。在跟踪过程中,采用反稀疏表达方式一次求解优化问题计算出所有粒子权重来提高算法效率。实验结果表明,本文算法具有良好的鲁棒性和实时性。

同期刊论文项目
同项目期刊论文
期刊信息
  • 《信号处理》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会
  • 主编:谢维信
  • 地址:北京鼓楼西大街41号
  • 邮编:100009
  • 邮箱:xhclfh@sohu.com
  • 电话:010-64010656
  • 国际标准刊号:ISSN:1003-0530
  • 国内统一刊号:ISSN:11-2406/TN
  • 邮发代号:80-531
  • 获奖情况:
  • 国家一级科技期刊
  • 国内外数据库收录:
  • 美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:10219