位置:成果数据库 > 期刊 > 期刊详情页
基于形状模板匹配的前视红外目标检测方法
  • ISSN号:0254-0037
  • 期刊名称:《北京工业大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]第二炮兵工程大学四系,西安710025, [2]96411部队,陕西宝鸡721006
  • 相关基金:国家自然科学基金资助项目(61003148).
中文摘要:

针对前视红外复杂地面固定目标无直接可用基准图、背景干扰严重、目标与背景灰度差异小、不利于目标识别等问题,提出了一种基于形状模板的目标识别方法.首先,在构建高斯多尺度空间的基础上,设计分层多阈值算法,检测感兴趣区域;其次,引入模糊集理论,提取形状特征,分离目标与背景;最后,用改进的Hausdorff距离算法进行精匹配,确定目标.实验结果表明,该算法匹配率与改进的Hausdorff距离算法相比提高了近20%,算法花费时间缩短了2/3;与Nprod算法相比匹配率提高了近30%,时间缩短了1/2,在密度为0.3的椒盐噪声下,匹配率仍能达到70%以上.对于复杂背景下的前视红外固定目标,该方法具有匹配率高、速度快、精度高等优点.

英文摘要:

For the forward looking infra-red (FLIR) image of complex ground fixed target without available base image, it was difficult to recognize the target due to the serious background clutter and small intensity differences of gray scale between target and background. A target recognition algorithm based on shape template matching was proposed. First, hierarchical multiple threshold algorithm based on constructing Gaussian multi-scale space was designed to test region of interest; Second, to extract shape feature and separate the target and background, fuzzy set theory was introduced; Finally, the modified Hausdorff distance algorithm was used for the precise matching, determining target. Experimental results show that comparing to modified Hausdorff distance algorithm, the matching probability of the proposed algorithm increases nearly 20% , taking time is shortened by 2/3, and comparing to Nprod algorithm, the matching probability increases nearly 30% , taking time is shortened by 1/2, under the pepper noise of 0.3 density, the matching probability is still able to reach 70% more. For recognising FLIR target on complex ground, this method has better performance on matching probability, computing speed and recognition precision.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京工业大学学报》
  • 中国科技核心期刊
  • 主管单位:北京市教委
  • 主办单位:北京工业大学
  • 主编:卢振洋
  • 地址:北京市朝阳区平乐园100号
  • 邮编:100124
  • 邮箱:xuebao@bjut.edu.cn
  • 电话:010-67392535
  • 国际标准刊号:ISSN:0254-0037
  • 国内统一刊号:ISSN:11-2286/T
  • 邮发代号:2-86
  • 获奖情况:
  • 中国高等学校自然科学学报优秀学报二等奖,北京市优秀期刊,华北5省市优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11924