位置:成果数据库 > 期刊 > 期刊详情页
基于粗糙集和BP神经网络算法的网络故障诊断模型研究
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]宁波大学信息科学与工程学院,浙江宁波315211
  • 相关基金:国家自然科学基金(61141015); 浙江省自然基金(Y1110161); 宁波市自然科学基金(2011A610181)
中文摘要:

针对计算机网络故障诊断知识库冗余性高、神经网络与PCA、DS证据等理论相结合诊断精度不高的难题,提出了一种新的基于粗糙集和BP神经网络的计算机网络故障诊断模型.首先利用粗糙集算法对网络故障特征进行约简处理、提取最小诊断规则;其次利用最小规则训练BP神经网络,建立基于粗糙集和BP神经网络的计算机网络故障诊断模型;最后将模型运用于真实网络故障数据诊断.结果表明:该模型具有学习效率高、诊断速度快、准确率高的特点,能够快速诊断网络故障类型.

英文摘要:

To deal with the problems of redundancy of network fault diagnosis,the knowledge base and Low Accuracy of neural network model combined with PCAand DS evidence theory are presented in this paper.A new fault diagnosis model of computer network based on rough set and BP neural network is engineered,in which many fault features of computer network are retrieved.These features are then reduced to the minimum diagnosis rules using rough set.The minimum diagnosis rules are trained by BP neural network.The simulation results indicate that the new fault diagnosis model has higher learning efficiency,faster speed of diagnosis and higher detection accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887