Hilbert型奇异积分算子在分析学中有重要的作用。本文通过引入参数λ和两个实数A1,A2,在广义区间(0,b)上定义了一个带参数的核为1xλ+yλ的Hilbert型奇异积分算子T:(Tf)(y)=∫b0f(x)xλ+yλdx,利用权函数方法和算子理论,研究了T的有界性问题,在条件A2p+A1q=2-λ下,得到了算子T的范数‖T‖=B1-A2pλ,1-A1qλλ。作为应用,还考虑其涉及内积的等价形式(Tf,g)≤B1-A2pλ,λ-1+A2pλλ1pB1-A1qλ,λ-1+A1qλλ1q‖f‖p,ω′‖g‖q,ω″。
Hilbert's type singular integral operator plays an important role in analysis. In this paper, by introducing an independent parameterλ and two real numbers A1, A2, we define a Hilbert type singular multiple integral operator T in a general interval (0,b) as follows:(Tf)(y)=∫b0f(x)xλ+yλdxusing the way of weight function and operator theory, the boundedness and norm of T are studied. Under condition of A2p+A1q=2-λ we obtain the norm of Tas ‖T‖=B1-A2pλ,1-A1qλλ.As their applications,the equivalent forms with inner product considered follows:(Tf,g)≤B1-A2pλ,λ-1+A2pλλ1pB1-A1qλ,λ-1+A1qλλ1q‖f‖p,ω′‖g‖q,ω″.