混沌时间序列预测问题是信号处理和自动控制领域中一个重要的研究方向,神经网络学习算法在处理这种高复杂性、强非线性的时间序列时具有很好的优势.应用一种具有良好性能的单隐层前向神经网络学习算法——极端学习机(ELM)学习算法,进行混沌时间序列问题的预测.与资源分配网络(RAN)学习算法相比,仿真结果表明ELM学习算法在具有较快学习速度的前提下,能够获得较好的预测性能,且ELM学习算法激活函数的选择具有问题依赖性.
The chaotic time series prediction is an important research orientation in signal processing and automatic control areas. The neural network learning algorithms show a significant advantage in solving high complex and strong nonlinear problems. A good learning algorithm for feedforward neural networks named extreme learning machine (ELM) was applied to chaotic time series prediction. Compared with resource allocating network (RAN) learning algorithm, the simulation results show that ELM learning algorithm can achieve satisfactory prediction performance with a fast learning speed. And the choice of the activation functions of ELM learning algorithm is data set dependent.