粒子滤波是一种基于贝叶斯原理的序贯Monte-Carlo方法。序贯重要性采样(SIS)算法是粒子滤波的核心算法。粒子滤波算法在处理非线性、非高斯系统的状态估计问题上优于其他滤波方法。本文对粒子滤波算法的基本原理及其在无线通信中的应用进行综述,重点介绍其中的几种典型应用:在盲均衡、衰落信道下的盲检测、多用户检测和衰落信道下的空时解码中的应用,并分别给出了每种应用的状态空间模型、权值更新公式和算法应用过程,并从性能、复杂度和适应性的角度分析了粒子滤波的应用优势。最后展望该算法在无线通信领域应用的发展方向。
Particle filtering is based on the concept of sequential importance sampling and the Bayesian theory, it is particularly useful in dealing with nonlinear and non-Gaussian problems. This paper presents the applications of particle filtering in the wireless communication such as blind equalization, blind detection over flat fading channels, multiuser detection and estimation of space-time codes in fading channels. In each case, the system model and the updating of the particle weights are discussed.