The effect of Fe on the martensitic transformation of TaRu high-temperature shape memory alloys has been investigated using first-principles calculations.The site preference of Fe in TaRu alloys has been clarified for the first time,and the results show that Fe is predicted to occupy Ru sites.The addition of Fe increases the stability of the Ta 50 Ru 50 x Fe x β phase,leading to a significant decrease in the β to β ’ martensitic transformation temperature.In addition,the mechanism of the Fe alloying effect is explained on the basis of the electronic structure.
The effect of Fe on the martensitic transformation of TaRu high-temperature shape memory alloys has been investigated using first-principles calculations.The site preference of Fe in TaRu alloys has been clarified for the first time,and the results show that Fe is predicted to occupy Ru sites.The addition of Fe increases the stability of the Ta 50 Ru 50 x Fe x β phase,leading to a significant decrease in the β to β ' martensitic transformation temperature.In addition,the mechanism of the Fe alloying effect is explained on the basis of the electronic structure.