为了研究一个新的线性特征值问题,引入一个2×2位势依赖能量的特征值问题,利用C3→sl(2,C)的线性映射,导出3×3阶矩阵形式的Lenard算子对,进而得到一族孤立子方程.通过引入τλ:C2→C3的映射,自然地导出Bargmann约束,将特征值问题非线性化为一个有限维可积系统,并利用母函数法导出该系统的对合守恒积分.
In this paper a new linear eigenvalue problem is studied. The Lenard operators and solitonian hierarchy are ob- tained by means of a linear map. The linear eigenvalue problem is nonlinearied as a finite-dimensional Hamilton system in Bargmann constrain. The conserved integrals of the system are obtained by means of generating function method.