位置:成果数据库 > 期刊 > 期刊详情页
基于流形学习和隐Markov模型的故障诊断
  • 期刊名称:计算机集成制造系统
  • 时间:0
  • 页码:2153-2159
  • 语言:中文
  • 分类:TH165.3[机械工程—机械制造及自动化] TN911.2[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]重庆大学机械传动国家重点实验室,重庆400044
  • 相关基金:国家863计划资助项目(2009AA04Z411); 国家自然科学基金资助项目(50875272)~~
  • 相关项目:新型无线传感器网络模式下机械振动监测新方法研究
中文摘要:

为实现旋转机械故障诊断的自动化与高精度,提出基于正交邻域保持嵌入和连续隐Markov模型的模型诊断方法。将活动件故障振动信号进行经验模式分解并构造Shannon熵得到高维特征向量,利用正交邻域保持嵌入将高维特征向量约简为低维特征向量,并输入到各个状态连续隐Markov链进行旋转机械的故障模式识别。通过深沟球轴承故障诊断实例验证了该模型的有效性。

英文摘要:

To realize automation and high accuracy of rotating machinery fault diagnosis,a model diagnosis method for rotating machinery was proposed based on Orthogonal Neighborhood Preserving Embedding(ONPE)and Continuous Hidden Markov Model(CHMM).Firstly,the fault vibration signals of moving parts were decomposed by EMD and Shannon entropy was constructed to obtain high-dimensional eigenvectors.Then,the high-dimensional eigenvectors were compressed and simplified as the low-dimensional eigenvectors by ONPE.Finally,the low-dimensional eigenvectors were put into CHMM for fault pattern recognition.Fault diagnosis example of deep groove ball bearings proved the effectiveness of this new method.

同期刊论文项目
同项目期刊论文