固体氧化物直接碳燃料电池采用固体氧化物作为电解质,能够将碳燃料的化学能直接转化为电能,具有效率高、燃料适应性广、利于CO2捕集等优点,在能源与环境问题日益突出的现实条件下展现出广阔的应用前景。固体氧化物直接碳燃料电池中的关键问题在于研发合适的碳燃料转化阳极,以满足反应催化、物质输运以及杂质耐受等要求。本文系统地总结并分析了多孔固体阳极、熔融碳酸盐阳极和液态金属阳极三类直接燃料电池阳极的结构特性、工作原理、材料特性等,特别关注了以液态金属作为阳极的直接碳燃料电池,分析了该类电极的优势,探讨了未来固体氧化物直接碳燃料电池阳极的发展方向。
Solid oxide direct carbon fuel cells (SO-DCFCs) can convert the chemical energy of the carbon fuel di- rectly into electricity with high efficiency, wide fuel applicability and convenience for CO2 capture. SO-DCFCs show promising development in the situation that the energy and environmental issues become increasingly prominent. One of the key issues in SO-DCFC development is the anode which can accelerate carbon conversion, mass transportation within the electrode and impurities tolerance. This paper systematically summarized and analyzed the anode structural features, operating process, material characteristics of three types of SO-DCFC anode, including porous solid anode, molten carbonate anode and liquid metal anode. The liquid metal anode was particularly focused on due to its distinc- tive advantages in current collection, performance stability and the CO ratio in exhaust gas. Finally, the development trends of the anode for SO-DCFC in the future are discussed.