推荐系统帮助用户过滤无用信息并预测其可能感兴趣的产品。在推荐系统中,协同过滤是应用最为广泛的方法之一。然而,传统的协同过滤方法是在产品维度上计算用户相似度,而且在计算相似度时无法考虑邻居用户的影响。因此,该类方法往往受到高维度、数据稀疏等问题的困扰。为此,本文提出一种基于用户兴趣传播的协同过滤方法,在兴趣维度上计算用户相似度,同时考虑了兴趣在不同用户间的传播。该方法不仅可以有效防止冷启动和数据稀疏问题,而且具有较高的预测准确度。在标准数据集MovieLens上的测试结果表明了本文算法的有效性。
推荐系统帮助用户过滤无用信息并预测其可能感兴趣的产品。在推荐系统中,协同过滤是应用最为广泛的方法之一。然而,传统的协同过滤方法是在产品维度上计算用户相似度,而且在计算相似度时无法考虑邻居用户的影响。因此,该类方法往往受到高维度、数据稀疏等问题的困扰。为此,本文提出一种基于用户兴趣传播的协同过滤方法,在兴趣维度上计算用户相似度,同时考虑了兴趣在不同用户间的传播。该方法不仅可以有效防止冷启动和数据稀疏问题,而且具有较高的预测准确度。在标准数据集MovieLens上的测试结果表明了本文算法的有效性。